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Interaction potentials for soft and hard ellipsoids
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Using results from colloid science we derive interaction potentials for computer simulations of mixtures of
soft or hard ellipsoids of arbitrary shape and size. Our results are in many respects reminicent of potentials of
the Gay-Berne type but have a well-defined microscopic interpretation and no adjustable parameters. Since our
potentials require the calculation of similar variables, the modification of existing simulation codes for Gay-
Berne potentials is straightforward. The computational performance should remain unaffected.
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[. INTRODUCTION unclear microscopic interpretatid]. In the present paper,
we use results from colloid scienfg] to derive approximate
In molecular simulation$1,2] short-range attractive and interaction potentials for mixtures of ellipsoids of arbitrary
repulsive interactions are typically represented usingsize and shape which have a well-defined microscopic inter-

Lennard-Jones$LJ) 6-12 potentials pretation and no adjustable parameters.

" 6 The paper is organized as follows: After introducing the

o o Gay-Berne potential in Sec. Il, we review in Sec. Il the
(?) B (T) : @ Hamaker theory for two spheres of arbitrary size and develop

a relatively simple approximation of the interaction potential

whereg/r is the dimensionless ratio of the effective particle which is valid at arbitrary distances. In Sec. IV, we general-
diameter and the interparticle distance. While thé part ize this expression to the case of interacting ellipsoids. Sec-
has a physical origin in dispersion or van der Waals interaction V presents a numerical test of this approximation for the
tions, ther ~12 repulsion is chosen by mathematical conve-case of pole contacts between aligned ellipsoids. In Sec. VI,
nience. For large molecules the evaluation of the interactiomve suggest computable expressions for the orientational de-
potential involves a computationally expensive double sumpendence of the interaction potential which are in many re-

mation of Eq.(1) over the respectivéatomiq interaction spects reminicent of those familiar from GB potentials. A

sites numerical test of the proposed interaction potential for ellip-
soidal particles of different shape at arbitrary relative posi-

_ tion and orientation is presented in Sec. VII. We conclude
U—ie%y 1,-6%3, 2 Uwilri), @ With a brief summary in Sec. VIII.
or the evaluation of a double integral, Il. THE GAY-BERNE POTENTIAL

A rigid body i is specified by its center positiaﬁ, its
orientation(expressed, for example, via a rotation matkix
(3)  for the transformation from the lab frame to the body frame
and its shape. In the case of ellipsoids, the shape is given by
in the corresponding continuum approximation for bodiesthree radiia; ,b; ,c; which can be used to define a “structure
with simple geometric shapes and number densﬁij(aé) of matrix,”
interaction sites. We will refer to interaction energies ob-
tained by(numerically evaluating Eq(3) as the “Hamaker” a 0 0
potential. s=[0 b 0
As an alternative Gay and Ber8] (GB) proposed the
use of more complicated single-site interaction potentials for 0 0 ¢
rigid molecules. Their approach is based on a heuristic modi- .
fication of a Gaussian overlap potential. While GB potentialdn the body frame of the ellipsoid. . .
provide a computationally efficient way to introduce aniso- '€ most general form of a Gay-Berne potential for dis-
tropic interactions in numerical studies of liquid crystalline Similar biaxial ellipsoids was introduced by Berardi, Fava,

systemg4,5], they have frequently been criticized for their @1d ZannoniBF2) [8] as a product of three terms

= [ [ e havav.,
Body 1J Body 2

, 4

U(A1,A2,r1)=U(A1,A3,12)
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The first term controls the distance dependence of thend (ellipsoida) shapes, is defined via Eggl) and (3). It
interaction and has the form of a simple LJ potential @¢|. requires the specification of a material constant and of the
6 shapesy; ,b; ,c; of the involved particles. Gay-Berne poten-

, (6) tials introduce additional adjustable parameters: the shift pa-
rametery, the empirical exponents and u, and three en-
ergy parameters per particle type. These parameters are
usually adjusted by fitting Eq5) to the numerical evaluation
of Eq. (2) for small assemblies of suitably arranged Lennard-
hy,=min(|r;—r;]) V(ieBody 1jcBody 2). (7) Jones particle§3] or specific organic moleculdd3]. Note,

that there are no additional parameters specifying the inter-
The position of the potential minimum, ¥8— y)o is shifted  actions between ellipsoids dfifferent shape. Rather, Egs.
empirically relative to the Lennard-Jones valu¥®@. Typi-  (6)—(15) provide heuristic “mixing rules” for this case.
cally y=1. The well depth is ming,) = — egg. In the following, we will partially justify the orientation

In general, the calculation df,, is nontrivial. For ellip-  dependent part of the Gay-Berne potential and the implicit
soids a suitable scheme was worked out by Peredral.  mixing rules forparticular choices of the adjustable param-
[6,9,10. These authors also clarified the meaning of the diseters. Note, however, that the product ansatz of (Byin-
tance correctly reduces the attractive and repulsive parts of the

GB N - interaction between extended objectsaabitrary distances
h1z(A1A2,112) =T12~ 012(AnAz.T12), ® simplepower laws with distancéndependentshape and
- 1. LT orientationdependenprefactors. To overcome this problem,
012(A1,A2:T12) = | 5112612 (A1 A2 (O e will abandon the strategy initiated by Gay and Berne who
_— T sought modifications to the Lennard-Jones potentiap@int
GlZ(AhAZ):AlSlAl’LAZgAZ' (10 particles. Instead we will try to preserve the case of interact-

which is usually employed together with the Gay-Berne po—Ing spheres of finite volume as a proper limit.

tential[11]. Equation(8) is an approximation which fails, for
example, in the case of two spheres with unequal ragii

<a,, whereoy,=2(af +a3)~\2a,>a, +a,. In this pa- Equation (3) can be solved exactly for two spheres of
per, we always use the correct contact distamge Figures  radius a;<a,, volume Vi=(477/3)ai?’ at a distancer,
4(a) and 4b) provide a comparison of the quality of the — (5, + a,)+h,, with h;,>0. For the attractive part of the
various approximation schemes, hfi, is replaced by the jnteraction Hamakef14] obtained

Gay-Berne approximatioh$s.

Ur: 4EGB

(o 12 o
h12+ Yo h12+ Yo

where the interparticle distanag, is replaced by the dis-
tanceh,, of closest approach between the two bodies,

. HAMAKER THEORY

The two other terms in Eq(5) control the interaction _ A 22,2, 22,8,
strength as a function of the relative orientation and position AT B ra,—(a;+ay)? ri,—(a,—a,)?
of the eIIipsoic.is. The second tefrh2] introduces an empiri- , ,
cal exponent: o, » +In(:;2:ili:g;2) , 16
N12(A1,Az) = m} : 11 | 12 19 2 |
s =[abi+ o lab] (17 Wherohu s usualy eferred 1o as Hamakers consant. Us-
The third term has the form we found for the repulsive part of the LJ potential
X12(A1,A2,T12)=[2r LB (AL AT 5]4, (13 Up— A1 U_6 rf,—7ria; +ay) +6(af+7a,a,+aj)
with 37800r, (rip—a;—ap)’
B1a(Ay,Ay) =A[EA +AJEA, (14) . ra,+7ri(a;+ay)+6(a2+7aja,+ad)
and (riptag+ay)’
e’ 0 0 rf,+7riy(a;—ay) +6(af—7a,a,+aj)
E=| 0 e™ 0 |, (15 - (ripta;—ap)’
0 0 eyt _r"{z—?rlz(al—az)+6(a§—7a1a2+ a3) a
where e, ,ey;,e.; characterize the relative well depth for (ri,—a;+ay)’ '

side-to-side, face-to-face, and end-to-end interactions be-
tween two ellipsoids of typé w is another empirical expo- Some insight can be gained by considering three limiting
nent. cases:(i) distances which are smaller than ttmurvature

To summarize, the physical problem of a mixture of col-radii of the spheregji) a small spheréi.e., a point particlg
loidal particles of equal composition, but of different sizesat an intermediate distance from a much larger sphere, and
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FIG. 1. (Color online only Attractive partU, of the potential

energy multiplied by the inverse asymptotic distance dependehce

as a function of the distance of closest approaébr pole contacts
between differently shaped ellipsoids) Hamaker potentialb) the
approximation proposed in the present paper, @@ Gay-Berne

6-12 potential adjusted to reproduce the energy minima within th
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FIG. 2. Sphere size dependence of the posi@mand depthb)
of the energy minimum: Hamaker potenti®@} Eqgs.(16) and(17),
our approximation(——) Egs. (20) and (21), large sphere/
Deryaguin(— — -) and small sphere/Lennard-Jones <) limits
Egs.(18) and(19).

resemble each other. They converge at large distances, be-
cause the particles were chosen to have identical volumes. In

gontrast, at small distances the interaction strongly depends

Deryaguin approximation. The curves converge at large distance§" the relative orientation and position of the nonspherical

because we have used prolafda,b,c)=(1,6,6)0], oblate
[(a,b,c)=(2,2,9)r], and sphericald=36"%¢) ellipsoids of iden-
tical volume. The plots contain results for sphere-splriek solid
line), prolate-prolatégray lines, oblate-oblaténarrow dark lines
and prolate-oblatédotted line$ contacts.

(iii ) the large distance limit of a 6-12 Lennard-Jones poten-

tial with appropriately renormalized prefactor:

[ Ap2aja, 1
S N R for 0<hq,<a,;
12 a;+a, hy,
A 1
UA:< —Evlh—?z fOI‘ a1<h12<a2 (18)
A1 1
- 2 1V2 6 for alla2<h121
\ 12
( 6
A, 2aja 1
12 £H% | T ) 2 for 0O<hy,<a,
2520a;+a,\ hyy/ hy,
Al2V 7|1 for a;<h;,<a
Ur={ 25, '1 hi h?z 1sNpxap

for a;,a,<hy,.

A12 ( g )6 1
VLV — | —
x? T 2lhpo pe,

) (19

Figure Xa) shows a log-log plot ofJ sh® which illustrates

particles.

Since Egs(16) and (17) are too complicated for an ap-
proximate generalization, we have instead developed a suit-
able combination of the three limiting cases discussed above:

Ao 2a,a, 1
—_— + —_

36 a;+a, hy,
3

UA%

ai

| arhl2 (20

a, )3

A12 g 6 45 2ala2 1
Ur~ —| |1+ = —
2025\ h 56a;+a, hy,
3
ai ax
a;+ h12/601’3)

a,+h;,/60"°

3
) . (2D

Prefactors were chosen in such a way that E2@. and(21)
reproduce the limits Eq$18) and (19) of the exact results.

As a consequence, the approximation is fairly reliable on all
length scale$compare, for example, the thick solid lines in
Figs. 1a) and 1b)]. This is also demonstrated in Fig. 2,
where we show the sphere size dependence of the depth and
position of the minimum ofUg+U,. While the short-
distance expansion becomes reliable for sphere radii
>5¢, Egs.(20) and(21) essentially reproduce the exact re-
sults for arbitrary sphere sizes. As pointed out above, poten-
tials of the Gay-Berne type E@5) cannot describe the com-

the deviations from the asymptotic power law at small dis-plex distance dependence of the interaction. But what about
tances. The figure also contains numerical result for the athe potential minimum? Within the short-distance/large
tractive part of the Hamaker potential for pole contacts besphere expansion, its depth.,;, and positionh;,,, are
tween prolate and oblate ellipsoids. Qualitatively, the curvegjiven by

041710-3



R. EVERAERS AND M. R. EJTEHADI PHYSICAL REVIEW B7, 041710 (2003

30Y6 2a,a, <L different power law behavior for parallel, perpendicular,
Unmin="~ 72 Alza(al+a2) : (220 and aligned configurations:
3016 2mA;, atl
hi2min=30 ""o. (23 U= 12 ar (30
I 5 h5
For the Gay-Berne potential, on the other hand,
UnG’llBr'I: €GBX 127712, (24) U _ 7TA12 a4 31
A+ 2 F! ( )
€1€;
X12= o (29 A gb
T rallu i 12
ert+e 1z
2( 1 2") Up__= 30 o 2 (32
m2=1, (28 \ve have found no truly satisfactory approximation that
hCB = — (26— )¢ 27 would reproduce all intermediate limiting cases for ellipsoids
12min v of arbitrary shape. Nevertheless, we have made some
A shift term with progress compared to a simple 6-12 potential. Our somewhat
naive strategy for developing an approximation for the gen-
y=2Y6-30"6~0.56 (28)  eral case idi) to use the Deryaguin approximation in the

. ) ) ) short-distance limit andii) to treat ellipsoids as spheres of
in the distances in Eq6) is thus a natural consequence of equivalent volume on length scales which exceed the particle
the insistence on a 6-12 potential. Furthermore, the compargigmeters.

son suggests a relation between the energy scale of the GB | the limit where large particles almost touch, the rel-

potential and the Hamaker constant, evant distances become small compared to the local radii of
3046 curvature of the bodies. The short-distance expansion of Eq.
€cg=App—— (29)  (3) in powers of the local curvature radii is known as Dery-
14

aguin approximation7,15]. In the most general caga6],

as well as the choicea=1 ande =a; /o. Note, that this each t’Jody has tvyo different principal radii of curvatiRe
T S and R/ at the point of closest approach. Furthermore, the

result represents a justification for one of the empirical GB_ .~ .

mixing rules. principal axes of the two surfaces can be rotated by an angle

0 relative to each other. The result of the Deryaguin approxi-

IV. INTERPOLATING BETWEEN THE DERYAGUIN
APPROXIMATION AND THE LARGE-DISTANCE LIMIT

1
210

mation for Lennard-Jones interactions can be written in the
form

In the general case of ellipsoids of arbitrary shape, rela- Up(h G)EE v 7_ T (33)
tive position, and orientation, the small- and the large- pwitiz: 12 X12712 his hio/ |’
distance limit remain(qualitativelyy unchanged. However,
for strongly nonspherical ellipsoids with<<c; there are new where, in analogy to Eq5), we tentatively identify the ori-
regimes for intermediate distanege<h<c;. For example, entation and relative position dependent part with a product
one finds for two thin prolates with semiaxesa,#,L), a  of two terms to be specified below

(34)

2071
X12M12=

\/ 1 1 1 1 1 1
—_— | == sin(b’)2+ —+ —
(Rl Ri)(RZ Ré) Ri R

11
_+_
Ri R;

We note that Eq(34) defines together with Eq$28) and  colloidal particles.
(29), a parameter-free6-12 potential which correctly de- Our second step is the generalization of Egf) and(21)
scribes the position and depth of the energy minima for largéo the interaction between ellipsoifi&7]
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A1, a, b, provement over the Deryaguin approximati@am a 6-12 po-
Up~— 52| 1+3712x12 tential taylored to reproduce the minima of the Deryaguin
36 h a;+hy/2)\ by+hy,/2 ST )
12/ 3917 Tz 1hre approximation. Figures 1a) and Xb) show that we also re-
Cy a, b, C, ) produce the crossover to the asymptotic behavior at large
cirhi 2N\t ho2 \ barh.t2/\ e,k h.2)'  distances reasonably well, at least relative to the parameter-
1 2’ e 22 27 e free Gay-Berne potentigFig. 1(c)].
(35
A 6 45 1 a VI. COMPUTABLE EXPRESSIONS FOR ARBITRARY
Up~ ——te (l) (1+ — PiaX1ri— ! ) CONTACT GEOMETRIES AND THE RELATION
2025\ hy, 56 hi2/\ a;+h,,/60Y3 TO THE GAY-BERNE POTENTIAL
b, c, a, In the next step, we take a closer look at the orientation
X R R R dependent prefactor in E33). We are less interested in its
by +hy,/6 C1+hyo/6 ax+hy,/6 exact calculation(i.e., the determination of the contact
points, the local curvature radii, and the angle between the
b, (o) L : P
% ) (36) principle axis on the two surfaceshan in finding expres-
b,+hy,/603) \ c,+ hy /603 sions which offer a good compromise between computability

_ _ _ and correctness. Quite interestingly, our final expressions
This ansatz reproduces at least the intermediate power lawgm out to be closely related to those used in Gay-Berne
for parallelly and perpendicularly oriented thin prolates quitepotentials.

well: We begin by providing definitions fog,, and 7, which,
. when multiplied with each other, reproduce E&4) and
4A;, a'L whose structure resembles E¢®3) and (11)
Up =73 5 37
h
B 2071 1)
4A,, a* | g
UA+ = 9 Fl (38)
. = K1t Ko (42)
4A12 a 12— 1/2’
A-=g (39) defQ(6)]
R 0 1/2
In contrast, our ansatz overestimates the potential at interme- Ki =de{( ' ,” , (43
diate distances for needles aligned along their long axes. 0 R
However, the following comparisons will show that the de-
viations are typically within a factor of 2 or @ver the entire R, O R, O
range of distances. Q(o)= 0 R +Q(0)" 0 R Q9), (44
1 2

V. POLE CONTACTS BETWEEN BIAXIAL ELLIPSOID o . .
OLE CONTACTS SOIbS ki=yR; R/ is the Gaussian curvature at the touch point,

The evaluation of EqQ.34) is straightforward for pole con-
tacts between aligned ellipsoids wifky=A, so thatd=0.
For two biaxial ellipsoids which touch at theirpoles, the
principle curvature radii at the touch point dRg= aizlci and

Q( ) is a two-dimensional rotation matrix. For two spherical
surfaces withR,;=R; andR,=R; the second term reduces
to 7]1251.

The GB definition Eqs(13)—(15) of x;, agrees for pole

R/ :b?/ci . In this case, Eq(34) reduces to contacts with Eq(41) providedthe parametep is set to

2071 n=1, (45)

X12M12~ -
Ci C|[C ©Cp
ai a3/ \bf b3

(40)
and the three BFZ energy parameters @d) are identified
with the Gaussian curvatures at the three poles

a.
As in the case of interacting spheres, we can check the qual- ﬁ 0 0
ity of our approximations by comparing to results obtained e
by, in the present case numerically, integrating E).for B 0 b; 0
pole contacts between oblate and prolate ellipsoids. Figure 3 Ei=o ﬁ (46)
shows good agreement for the shape, depth, and position of c
I

the minima. In particular, the figure demonstrates that for 0 0
small molecules Eq€35) and(36) provide a significant im-
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FIG. 3. (Color online only Distance dependence of the potential energy for all possible pole contacts between an oblate and a prolate
ellipsoid with semiaxes (1,6,6) and (2,2,9y, respectively: @) Hamaker potential obtained via a Monte Carlo evaluation of the six-
dimensional integral Eq3); (— — -) Deryaguin approximation Eq$33) and(40); (- - -) a GB 6-12 potential Eq5) adjusted to reproduce
the position and depth of the minima in the Deryaguin approximation 5.and (29); (——) our proposal Egs(35) and (36). Two
datasets were shifted along thiexis for clarity reasons. Note that none of the approximations contains freely adjustable parameters. The
inset shows the ratio of the well depths of the Hamaker potential and of our potential as a function of the absolute welkJdpéisults
for pole contacts; {) results for ellipsoids with randomly chosen relative orientations and positions whose distance is varied along the
center-to-center line. A comparison of the two datasets allows an evaluation of the quality of our approximatigpsafat 4, (see Sec.

VI).

__ (A T1)=(TLATS *Afyp) 12 (49)
dets]S - (47
In this manner, we arrive at the following approximative ex-

The relation between the GB definition EQ.1) of 7,,  Pression foryy:

and Eq.(42) is less direct. The reason is that the curvature 2 5
matrices in Eq.44) characterizesurfacesand, as a conse- n1a(A A ):detsl]/‘flere[SZ]/‘TZ (50)
quence, are two dimensional. Similarly, the an@léescribes T L def Hypl (g + 0p)]H2

the relative rotation of the two surfaces arouhdir common
normal vector at the points of closest approat contrast,
GB variables characterize the shape and orientation of three-
dimensional bodies. In the following, we will present a heu-
ristic combination of GB variables which reproduces Eq.as a side result, we note that the expressionsyferand 71,
(42) for pole contacts. . __can be further simplified for those contacts which dominate
As a first step, we consider the definition of the Gaussian the ordered phases of typical liquid crystals, i.e., contacts
curvature in terms of the curvature matrix, £43). Atthec  potween similar poles of identical ellipsoids,(b;,c,)

" 1 1
H12<A1,Az,r>=;1AI§A1+;2AZSEA2. (51)

pole k.; can be written in the form =(ay,b,,c,)=(a,b,c).
a vz AL A= 46~ de(S] )
C 1 1 12 X12(A1,A2,M12 —m,
L= = — — 12\ 1:M2,112
Kei=1 de : 7 (Cide{cisz) .
< 2%%def S]
MaAAA))=—— (53

48 (defGy)) ™

For arbitrary orientations it is tempting to replaceby the  Allin all, we are lead to expressions which are in remarkable
projected diameter agreement with those proposed by BFZ. In the casg,6f
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we employ the same functional form together with particular 1?2
choices for the four adjustable parametars,;,epi,eci- In
the case ofy,,, our Eqs.(50) and(51), respectively, Eq(53) 1
resemble the corresponding E¢3$1) and (10) so strongly,
that it seems clear that our consideration eliminate with
=1 the last remaining free parameter of the GB potential.
We note that our proposed modifications leave with
and 7,, the most CPU time intensive part of the GB poten- < 4
tial essentially unchanged. The small number of additional &
scalar operations necessary for the evaluation of E2f. SR
and(36) hardly affects the performance of simulation codes.

UA, Hamaker
8.

VIl. NUMERICAL TEST OF THE APPROXIMATIONS s

-0 - -8 -4 -2 H -10 -8 ] 4 -2 4
FOR ARBITRARY RELATIVE POSITION AND T
ORIENTATION OF THE ELLIPSOIDS Us, Hamaker (arbitrary units)

The most important question is, of course, how reliable FIG. 4.(Color online only Deviations of approximate potentials
the proposed approximations are. Similarly to E@S) and from the true Hamaker_potentlgl as a function of the absolute value
(36), the combination of Eq€13), (45), (47), (50), and(51) of the Hamaker potent!a(a) using the.correct dlst_ance of closgst
can only be considered as an educated guess fol( 3. approach Eq(7); (b) using the approximate GB distance function
The fact that we reproduce the results of the Deryaguin apEd: (8)- We show results for contacts between an oblate and a pro-
proximation for pole contacts inspires some confidence, buli.ate ellipsoid W'th. semiaxes a(b,c)=(1,6,6)r ar_ld (a:b,c) .
otherwise we have made substancial and uncontrolled a =-(2’2’9.)(.T’ respectively, and rand_omly chosen relative orientations
proximations which need to be checked against the numeré—mOI p(?s't'or?s(dark ) our potential(gray +) .a.Gay_Berne 6-12
cal evaluation of Eq(3) for various relative positions and botentlal adjusted to reproduce the energy minima within the Dery-

. . ) . guin aproximation. The solid lines show the corresponding results
orientations. We represent the results by plotting th_e ratio of, pole contactgsee Fig. 1
the approximative and the exact energy as a function of the
exact energy. In this manner, results from a high-dimensionahodifications we propose are the following.
parameter space af@ projected onto a single axis ari) (1) To abandon the unphysical factorization of the orien-
sorted by importance. The inset in Fig. 3 shows a comparisofation and distance dependent parts of the potefial (5)]
of the depths of the energy wells close to contact for fixed®s Well as the Lennard-Jones-like form of the distance de-
random orientations, while Fig(# deals with the attractive Pendence itselfEq. (6)] and to replace them by Eq35)
part of the interaction at arbitrary distances. Both figures als@nd(36). _ o
contain results for the pole contacts discussed before to allow (2) T0 use the Gaussian curvatures at the ellipsoid poles
for an independent evaluation of the quality of the approxi-=dS: (49=(47) in order to characterize the relative well
mations for the distance and for the orientational part of th depth for side-to-side, face-to-face, and end-to-end interac-
interaction potential. ions through therrlentayon qnd relative position dependent
When judged against the corresponding results for thdactor x1(A1,Az,T1,) defined in Egs(13) and(14).
Gay-Berne potential, the agreement between our proposal (3) To replace the definition Eq¢10)—(11) of the purely
and the numerical evaluation of E) is excellent. In ab- orientiation dependent factay; (A1 ,Az) by Eqs.(49)—(51).

solute terms, the deviations do not exceed a factor of 2-3 in (4 To use the(effective Hamaker constam,, [7] to set
either direction. Quite interestingly, our approximations forthe energy scale. . .

Y1, and 7;, do not seem to be the source of large additional Our results for the attractive part of the soft potential are
errors. Figure é) shows that the agreement is significantly diréctly applicable to hard ellipsoids with van der Waals in-
reduced, if the approximate GB distance function By.is  teractions. Furthermore, the proposed potential comprises the

used instead of the true distance of closest approacki7Eg. intgractipn of point pqrticles with eIIipgoids asa yvell—defined
limit. This may be of interest for studies of wetting or poly-

mer adsorption in colloidal dispersions which so far assume
Viil. SUMMARY either a flat or a cylindrical geometf18].

We have presented an approximative interaction potential
for soft ellipsoidal particles. Our potential use@dmos) the
same variables as the Berardi, Fava, and Zanfgjriorm of We gratefully acknowledge extended discussions with L.
the Gay-Berng3] potential for biaxial ellipsoids, agrees sig- Delle Site, M. Allen, and F. Miler-Plathe and benefitted
nificantly better with the numerically evaluated exact inter-from a copy of a Gay-Berne simulation code provided by M.
action potential, has no unphysical limits, and avoids theAllen. The authors thank the DFG for the financial support of
introduction of empirical adjustable parameters. The mairthis work within an Emmy-Noether grant.
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