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Interaction potentials for soft and hard ellipsoids

R. Everaers* and M. R. Ejtehadi†

Max-Planck-Institut fu¨r Polymerforschung, Postfach 3148, D-55021 Mainz, Germany
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Using results from colloid science we derive interaction potentials for computer simulations of mixtures of
soft or hard ellipsoids of arbitrary shape and size. Our results are in many respects reminicent of potentials of
the Gay-Berne type but have a well-defined microscopic interpretation and no adjustable parameters. Since our
potentials require the calculation of similar variables, the modification of existing simulation codes for Gay-
Berne potentials is straightforward. The computational performance should remain unaffected.
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I. INTRODUCTION

In molecular simulations@1,2# short-range attractive an
repulsive interactions are typically represented us
Lennard-Jones~LJ! 6-12 potentials

ULJ54eLJF S s

r D 12

2S s

r D 6G , ~1!

wheres/r is the dimensionless ratio of the effective partic
diameter and the interparticle distance. While ther 26 part
has a physical origin in dispersion or van der Waals inter
tions, ther 212 repulsion is chosen by mathematical conv
nience. For large molecules the evaluation of the interac
potential involves a computationally expensive double su
mation of Eq. ~1! over the respective~atomic! interaction
sites

U5 (
i PBody 1

(
j PBody 2

ULJ~r i j !, ~2!

or the evaluation of a double integral,

U5E
Body 1

E
Body 2

r1~rW !r2~rW8!ULJ~ urW2rW8u!dV dV8,

~3!

in the corresponding continuum approximation for bod
with simple geometric shapes and number densitiesr i(rW) of
interaction sites. We will refer to interaction energies o
tained by~numerically! evaluating Eq.~3! as the ‘‘Hamaker’’
potential.

As an alternative Gay and Berne@3# ~GB! proposed the
use of more complicated single-site interaction potentials
rigid molecules. Their approach is based on a heuristic m
fication of a Gaussian overlap potential. While GB potenti
provide a computationally efficient way to introduce anis
tropic interactions in numerical studies of liquid crystallin
systems@4,5#, they have frequently been criticized for the
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unclear microscopic interpretation@6#. In the present paper
we use results from colloid science@7# to derive approximate
interaction potentials for mixtures of ellipsoids of arbitra
size and shape which have a well-defined microscopic in
pretation and no adjustable parameters.

The paper is organized as follows: After introducing t
Gay-Berne potential in Sec. II, we review in Sec. III th
Hamaker theory for two spheres of arbitrary size and deve
a relatively simple approximation of the interaction potent
which is valid at arbitrary distances. In Sec. IV, we gener
ize this expression to the case of interacting ellipsoids. S
tion V presents a numerical test of this approximation for
case of pole contacts between aligned ellipsoids. In Sec.
we suggest computable expressions for the orientational
pendence of the interaction potential which are in many
spects reminicent of those familiar from GB potentials.
numerical test of the proposed interaction potential for ell
soidal particles of different shape at arbitrary relative po
tion and orientation is presented in Sec. VII. We conclu
with a brief summary in Sec. VIII.

II. THE GAY-BERNE POTENTIAL

A rigid body i is specified by its center positionrW i , its
orientation~expressed, for example, via a rotation matrixA i
for the transformation from the lab frame to the body fram!
and its shape. In the case of ellipsoids, the shape is give
three radiiai ,bi ,ci which can be used to define a ‘‘structu
matrix,’’

Si5S ai 0 0

0 bi 0

0 0 ci

D , ~4!

in the body frame of the ellipsoid.
The most general form of a Gay-Berne potential for d

similar biaxial ellipsoids was introduced by Berardi, Fav
and Zannoni~BFZ! @8# as a product of three terms

U~A1 ,A2 ,rW12!5U r~A1 ,A2 ,rW12!

3h12~A1 ,A2!x12~A1 ,A2 , r̂ 12!, ~5!

where (r̂ 12) rW12 is the~unit! vector between the center pos
tions: rW12[rW22rW1 and r̂ 12[rW12 /urW12u.

r-
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The first term controls the distance dependence of
interaction and has the form of a simple LJ potential Eq.~1!

U r54eGBF S s

h121gs D 12

2S s

h121gs D 6G , ~6!

where the interparticle distancer 12 is replaced by the dis
tanceh12 of closest approach between the two bodies,

h12[min~ urW i2rW j u! ;~ i PBody 1,j PBody 2!. ~7!

The position of the potential minimum, (21/62g)s is shifted
empirically relative to the Lennard-Jones value 21/6s. Typi-
cally g51. The well depth is min(Ur)52eGB.

In general, the calculation ofh12 is nontrivial. For ellip-
soids a suitable scheme was worked out by Perramet al.
@6,9,10#. These authors also clarified the meaning of the d
tance

h12
GB~A1 ,A2 ,rW12!5r 122s12~A1 ,A2 , r̂ 12!, ~8!

s12~A1 ,A2 , r̂ 12!5F1

2
r̂ 12

T G12
21~A1 ,A2! r̂ 12G21/2

, ~9!

G12~A1 ,A2!5A1
TS1

2A11A2
TS2

2A2 , ~10!

which is usually employed together with the Gay-Berne p
tential @11#. Equation~8! is an approximation which fails, fo
example, in the case of two spheres with unequal radiia1

!a2, wheres125A2(a1
21a2

2)'A2a2@a11a2. In this pa-
per, we always use the correct contact distanceh12. Figures
4~a! and 4~b! provide a comparison of the quality of th
various approximation schemes, ifh12 is replaced by the
Gay-Berne approximationh12

GB.
The two other terms in Eq.~5! control the interaction

strength as a function of the relative orientation and posit
of the ellipsoids. The second term@12# introduces an empiri-
cal exponentn:

h12~A1 ,A2!5F 2s1s2

det@G12~A1 ,A2!#G
n/2

, ~11!

si5@aibi1cici #@aibi #
1/2, ~12!

The third term has the form

x12~A1 ,A2 , r̂ 12!5@2r̂ 12
T B12

21~A1 ,A2! r̂ 12#
m, ~13!

with

B12~A1 ,A2!5A1
TE1A11A2

TE2A2 ~14!

and

Ei5S eai
21/m 0 0

0 ebi
21/m 0

0 0 eci
21/m

D , ~15!

where eai ,ebi ,eci characterize the relative well depth fo
side-to-side, face-to-face, and end-to-end interactions
tween two ellipsoids of typei. m is another empirical expo
nent.

To summarize, the physical problem of a mixture of c
loidal particles of equal composition, but of different siz
04171
e

-

-

n

e-

-

and ~ellipsoidal! shapes, is defined via Eqs.~1! and ~3!. It
requires the specification of a material constant and of
shapesai ,bi ,ci of the involved particles. Gay-Berne poten
tials introduce additional adjustable parameters: the shift
rameterg, the empirical exponentsn and m, and three en-
ergy parameters per particle type. These parameters
usually adjusted by fitting Eq.~5! to the numerical evaluation
of Eq. ~2! for small assemblies of suitably arranged Lenna
Jones particles@3# or specific organic molecules@13#. Note,
that there are no additional parameters specifying the in
actions between ellipsoids ofdifferent shape. Rather, Eqs
~6!–~15! provide heuristic ‘‘mixing rules’’ for this case.

In the following, we will partially justify the orientation
dependent part of the Gay-Berne potential and the imp
mixing rules forparticular choices of the adjustable param
eters. Note, however, that the product ansatz of Eq.~5! in-
correctly reduces the attractive and repulsive parts of
interaction between extended objects atarbitrary distances
to simplepower laws with distanceindependent, shape and
orientationdependentprefactors. To overcome this problem
we will abandon the strategy initiated by Gay and Berne w
sought modifications to the Lennard-Jones potential forpoint
particles. Instead we will try to preserve the case of intera
ing spheres of finite volume as a proper limit.

III. HAMAKER THEORY

Equation ~3! can be solved exactly for two spheres
radius a1<a2, volume Vi5(4p/3)ai

3 at a distancer 12

5(a11a2)1h12 with h12.0. For the attractive part of the
interaction Hamaker@14# obtained

UA52
A12

6 F 2a1a2

r 12
2 2~a11a2!2

1
2a1a2

r 12
2 2~a12a2!2

1 lnS r 12
2 2~a11a2!2

r 12
2 2~a12a2!2D G , ~16!

whereA12 is usually referred to as Hamaker’s constant. U
ing LJ unitsA12 is given byA1254p2eLJ(rs3)2. Similarly,
we found for the repulsive part of the LJ potential

UR5
A12

37800

s6

r 12
F r 12

2 27r 12~a11a2!16~a1
217a1a21a2

2!

~r 122a12a2!7

1
r 12

2 17r 12~a11a2!16~a1
217a1a21a2

2!

~r 121a11a2!7

2
r 12

2 17r 12~a12a2!16~a1
227a1a21a2

2!

~r 121a12a2!7

2
r 12

2 27r 12~a12a2!16~a1
227a1a21a2

2!

~r 122a11a2!7 G . ~17!

Some insight can be gained by considering three limit
cases:~i! distances which are smaller than the~curvature!
radii of the spheres,~ii ! a small sphere~i.e., a point particle!
at an intermediate distance from a much larger sphere,
0-2
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INTERACTION POTENTIALS FOR SOFT AND HARD . . . PHYSICAL REVIEW E67, 041710 ~2003!
~iii ! the large distance limit of a 6-12 Lennard-Jones pot
tial with appropriately renormalized prefactor:

UA55
2

A12

12

2a1a2

a11a2

1

h12
for 0,h12!a1

2
A12

6p
V1

1

h12
3

for a1!h12!a2

2
A12

p2
V1V2

1

h12
6

for a1 ,a2!h12,

~18!

UR55
A12

2520

2a1a2

a11a2
S s

h12
D 6 1

h12
for 0,h12!a1

A12

45p
V1S s

h12
D 6 1

h12
3

for a1!h12!a2

A12

p2
V1V2S s

h12
D 6 1

h12
6

for a1 ,a2!h12.

~19!

Figure 1~a! shows a log-log plot ofUAh6 which illustrates
the deviations from the asymptotic power law at small d
tances. The figure also contains numerical result for the
tractive part of the Hamaker potential for pole contacts
tween prolate and oblate ellipsoids. Qualitatively, the cur

FIG. 1. ~Color online only! Attractive partUA of the potential
energy multiplied by the inverse asymptotic distance dependench6

as a function of the distance of closest approachh for pole contacts
between differently shaped ellipsoids:~a! Hamaker potential,~b! the
approximation proposed in the present paper, and~c! a Gay-Berne
6-12 potential adjusted to reproduce the energy minima within
Deryaguin approximation. The curves converge at large distan
because we have used prolate@(a,b,c)5(1,6,6)s#, oblate
@(a,b,c)5(2,2,9)s#, and spherical (a5361/3s) ellipsoids of iden-
tical volume. The plots contain results for sphere-sphere~thick solid
line!, prolate-prolate~gray lines!, oblate-oblate~narrow dark lines!,
and prolate-oblate~dotted lines! contacts.
04171
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resemble each other. They converge at large distances
cause the particles were chosen to have identical volume
contrast, at small distances the interaction strongly depe
on the relative orientation and position of the nonspheri
particles.

Since Eqs.~16! and ~17! are too complicated for an ap
proximate generalization, we have instead developed a s
able combination of the three limiting cases discussed ab

UA'2
A12

36 S 113
2a1a2

a11a2

1

h12
D

3S a1

a11h12/2
D 3S a2

a21h12/2
D 3

, ~20!

UR'
A12

2025S s

h D 6S 11
45

56

2a1a2

a11a2

1

h12
D

3S a1

a11h12/601/3D 3S a2

a21h12/601/3D 3

. ~21!

Prefactors were chosen in such a way that Eqs.~20! and~21!
reproduce the limits Eqs.~18! and ~19! of the exact results.
As a consequence, the approximation is fairly reliable on
length scales@compare, for example, the thick solid lines
Figs. 1~a! and 1~b!#. This is also demonstrated in Fig. 2
where we show the sphere size dependence of the depth
position of the minimum ofUR1UA . While the short-
distance expansion becomes reliable for sphere rada
.5s, Eqs.~20! and~21! essentially reproduce the exact r
sults for arbitrary sphere sizes. As pointed out above, po
tials of the Gay-Berne type Eq.~5! cannot describe the com
plex distance dependence of the interaction. But what ab
the potential minimum? Within the short-distance/lar
sphere expansion, its depthUmin and positionh12,min are
given by

e
s,

FIG. 2. Sphere size dependence of the position~a! and depth~b!
of the energy minimum: Hamaker potential (d) Eqs.~16! and~17!,
our approximation ~——! Eqs. ~20! and ~21!, large sphere/
Deryaguin ~– – –! and small sphere/Lennard-Jones (•••) limits
Eqs.~18! and ~19!.
0-3
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Umin52
301/6

14
A12

2a1a2

s~a11a2!
, ~22!

h12,min53021/6s. ~23!

For the Gay-Berne potential, on the other hand,

Umin
GB 5eGBx12h12, ~24!

x125
e1e2

F1

2
~e1

1/m1e2
1/m!Gm , ~25!

h1251, ~26!

h12,min
GB 5~21/62g!s. ~27!

A shift term with

g521/623021/6'0.56 ~28!

in the distances in Eq.~6! is thus a natural consequence
the insistence on a 6-12 potential. Furthermore, the comp
son suggests a relation between the energy scale of the
potential and the Hamaker constant,

eGB5A12

301/6

14
, ~29!

as well as the choicesm51 andei5ai /s. Note, that this
result represents a justification for one of the empirical G
mixing rules.

IV. INTERPOLATING BETWEEN THE DERYAGUIN
APPROXIMATION AND THE LARGE-DISTANCE LIMIT

In the general case of ellipsoids of arbitrary shape, re
tive position, and orientation, the small- and the larg
distance limit remain~qualitatively! unchanged. However
for strongly nonspherical ellipsoids withai!ci there are new
regimes for intermediate distanceai!h!ci . For example,
one finds for two thin prolates with semiaxes (a,a,L), a
-
rg

04171
ri-
B

-
-

!L different power law behavior for parallel, perpendicula
and aligned configurations:

UAuu5
2pA12

5

a4L

h5
, ~30!

UA15
pA12

2

a4

h4
, ~31!

UA225
A12

30

a4

h2L2
. ~32!

We have found no truly satisfactory approximation th
would reproduce all intermediate limiting cases for ellipso
of arbitrary shape. Nevertheless, we have made so
progress compared to a simple 6-12 potential. Our somew
naive strategy for developing an approximation for the g
eral case is~i! to use the Deryaguin approximation in th
short-distance limit and~ii ! to treat ellipsoids as spheres o
equivalent volume on length scales which exceed the par
diameters.

In the limit where large particles almost touch, the re
evant distances become small compared to the local rad
curvature of the bodies. The short-distance expansion of
~3! in powers of the local curvature radii is known as Der
aguin approximation@7,15#. In the most general case@16#,
each body has two different principal radii of curvatureRi

and Ri8 at the point of closest approach. Furthermore,
principal axes of the two surfaces can be rotated by an a
u relative to each other. The result of the Deryaguin appro
mation for Lennard-Jones interactions can be written in
form

UDW~h12,u![
A12

12
x12h12F 1

210S s

h12
D 7

2S s

h12
D G , ~33!

where, in analogy to Eq.~5!, we tentatively identify the ori-
entation and relative position dependent part with a prod
of two terms to be specified below
x12h125
2s21

AS 1

R1

2
1

R18
D S 1

R2

2
1

R28
D sin~u!21S 1

R1

1
1

R2
D S 1

R18
1

1

R28
D

. ~34!
We note that Eq.~34! defines together with Eqs.~28! and
~29!, a parameter-free6-12 potential which correctly de
scribes the position and depth of the energy minima for la
 e

colloidal particles.
Our second step is the generalization of Eqs.~20! and~21!

to the interaction between ellipsoids@17#
0-4
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UA'2
A12

36 S 113h12x12

1

h12
D S a1

a11h12/2
D S b1

b11h12/2
D

3S c1

c11h12/2
D S a2

a21h12/2
D S b2

b21h12/2
D S c2

c21h12/2
D ,

~35!

UR'
A12

2025S s

h12
D 6S 11

45

56
h12x12

1

h12
D S a1

a11h12/601/3D
3S b1

b11h12/601/3D S c1

c11h12/601/3D S a2

a21h12/601/3D
3S b2

b21h12/601/3D S c2

c21h12/601/3D . ~36!

This ansatz reproduces at least the intermediate power
for parallelly and perpendicularly oriented thin prolates qu
well:

UAuu5
4A12

3

a4L

h5
, ~37!

UA15
4A12

9

a4

h4
, ~38!

UA225
4A12

9

a4

h4
. ~39!

In contrast, our ansatz overestimates the potential at inter
diate distances for needles aligned along their long a
However, the following comparisons will show that the d
viations are typically within a factor of 2 or 3over the entire
range of distances.

V. POLE CONTACTS BETWEEN BIAXIAL ELLIPSOIDS

The evaluation of Eq.~34! is straightforward for pole con
tacts between aligned ellipsoids withA15A2 so thatu50.
For two biaxial ellipsoids which touch at theirc poles, the
principle curvature radii at the touch point areRi5ai

2/ci and
Ri85bi

2/ci . In this case, Eq.~34! reduces to

x12h125
2s21

AS c1

a1
2

1
c2

a2
2D S c1

b1
2

1
c2

b2
2D

. ~40!

As in the case of interacting spheres, we can check the q
ity of our approximations by comparing to results obtain
by, in the present case numerically, integrating Eq.~3! for
pole contacts between oblate and prolate ellipsoids. Figu
shows good agreement for the shape, depth, and positio
the minima. In particular, the figure demonstrates that
small molecules Eqs.~35! and~36! provide a significant im-
04171
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provement over the Deryaguin approximation~or a 6-12 po-
tential taylored to reproduce the minima of the Deryagu
approximation!. Figures 1~a! and 1~b! show that we also re-
produce the crossover to the asymptotic behavior at la
distances reasonably well, at least relative to the parame
free Gay-Berne potential@Fig. 1~c!#.

VI. COMPUTABLE EXPRESSIONS FOR ARBITRARY
CONTACT GEOMETRIES AND THE RELATION

TO THE GAY-BERNE POTENTIAL

In the next step, we take a closer look at the orientat
dependent prefactor in Eq.~33!. We are less interested in it
exact calculation~i.e., the determination of the contac
points, the local curvature radii, and the angle between
principle axis on the two surfaces! than in finding expres-
sions which offer a good compromise between computab
and correctness. Quite interestingly, our final expressi
turn out to be closely related to those used in Gay-Be
potentials.

We begin by providing definitions forx12 andh12 which,
when multiplied with each other, reproduce Eq.~34! and
whose structure resembles Eqs.~13! and ~11!

x12[S 2s21

k1
211k2

21D , ~41!

h12[
k11k2

det@Q~u!#1/2
, ~42!

k i5detF S Ri 0

0 Ri8
D G1/2

, ~43!

Q~u![S R1 0

0 R18
D 1V~u! tS R2 0

0 R28
D V~u!, ~44!

k i[ARi Ri8 is the Gaussian curvature at the touch poi
V(u) is a two-dimensional rotation matrix. For two spheric
surfaces withR15R18 and R25R28 the second term reduce
to h12[1.

The GB definition Eqs.~13!–~15! of x12 agrees for pole
contacts with Eq.~41! providedthe parameterm is set to

m[1, ~45!

and the three BFZ energy parameters Eq.~15! are identified
with the Gaussian curvatures at the three poles

Ei5sS ai

bici
0 0

0
bi

aici
0

0 0
ci

aibi

D ~46!
0-5
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FIG. 3. ~Color online only! Distance dependence of the potential energy for all possible pole contacts between an oblate and a
ellipsoid with semiaxes (1,6,6)s and (2,2,9)s, respectively: (d) Hamaker potential obtained via a Monte Carlo evaluation of the
dimensional integral Eq.~3!; ~– – –! Deryaguin approximation Eqs.~33! and~40!; (•••) a GB 6-12 potential Eq.~5! adjusted to reproduce
the position and depth of the minima in the Deryaguin approximation Eqs.~28! and ~29!; ~——! our proposal Eqs.~35! and ~36!. Two
datasets were shifted along they axis for clarity reasons. Note that none of the approximations contains freely adjustable paramete
inset shows the ratio of the well depths of the Hamaker potential and of our potential as a function of the absolute well depth. (3) Results
for pole contacts; (•) results for ellipsoids with randomly chosen relative orientations and positions whose distance is varied alo
center-to-center line. A comparison of the two datasets allows an evaluation of the quality of our approximations forx12 andh12 ~see Sec.
VI !.
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det@Si #
Si

2 . ~47!

The relation between the GB definition Eq.~11! of h12
and Eq.~42! is less direct. The reason is that the curvatu
matrices in Eq.~44! characterizesurfacesand, as a conse
quence, are two dimensional. Similarly, the angleu describes
the relative rotation of the two surfaces aroundtheir common
normal vector at the points of closest approach. In contrast,
GB variables characterize the shape and orientation of th
dimensional bodies. In the following, we will present a he
ristic combination of GB variables which reproduces E
~42! for pole contacts.

As a first step, we consider the definition of the Gauss
curvature in terms of the curvature matrix, Eq.~43!. At the c
pole kci can be written in the form

kci55 detF S ai
2

ci

0

0
bi

2

ci

D G 6
1/2

5S 1

ci
detF 1

ci
Si

2G D 1/2

.

~48!

For arbitrary orientations it is tempting to replaceci by the
projected diameter
04171
e
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n

s i~A i , r̂ 12![~ r̂ 12
T A i

TSi
22A i r̂ 12!

21/2. ~49!

In this manner, we arrive at the following approximative e
pression forh12:

h12~A1 ,A2!5
det@S1#/s1

21det@S2#/s2
2

@det@H12#/~s11s2!#1/2
, ~50!

H12~A1 ,A2 , r̂ !5
1

s1
A1

TS1
2A11

1

s2
A2

TS2
2A2 . ~51!

As a side result, we note that the expressions forx12 andh12
can be further simplified for those contacts which domin
in the ordered phases of typical liquid crystals, i.e., conta
between similar poles of identical ellipsoids (a1 ,b1 ,c1)
5(a2 ,b2 ,c2)5(a,b,c).

x12~A1 ,A2 , r̂ 12!5
4s21det@S#

s12
2 ~A1 ,A2 , r̂ 12!

, ~52!

h12~A1 ,A2!5
23/2det@S#

~det@G12# !1/2
. ~53!

All in all, we are lead to expressions which are in remarka
agreement with those proposed by BFZ. In the case ofx12,
0-6
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INTERACTION POTENTIALS FOR SOFT AND HARD . . . PHYSICAL REVIEW E67, 041710 ~2003!
we employ the same functional form together with particu
choices for the four adjustable parametersm,eai ,ebi ,eci . In
the case ofh12, our Eqs.~50! and~51!, respectively, Eq.~53!
resemble the corresponding Eqs.~11! and ~10! so strongly,
that it seems clear that our consideration eliminate withn
[1 the last remaining free parameter of the GB potentia

We note that our proposed modifications leave withx12
andh12 the most CPU time intensive part of the GB pote
tial essentially unchanged. The small number of additio
scalar operations necessary for the evaluation of Eqs.~35!
and~36! hardly affects the performance of simulation cod

VII. NUMERICAL TEST OF THE APPROXIMATIONS
FOR ARBITRARY RELATIVE POSITION AND

ORIENTATION OF THE ELLIPSOIDS

The most important question is, of course, how relia
the proposed approximations are. Similarly to Eqs.~35! and
~36!, the combination of Eqs.~13!, ~45!, ~47!, ~50!, and~51!
can only be considered as an educated guess for Eq.~34!.
The fact that we reproduce the results of the Deryaguin
proximation for pole contacts inspires some confidence,
otherwise we have made substancial and uncontrolled
proximations which need to be checked against the num
cal evaluation of Eq.~3! for various relative positions an
orientations. We represent the results by plotting the ratio
the approximative and the exact energy as a function of
exact energy. In this manner, results from a high-dimensio
parameter space are~i! projected onto a single axis and~ii !
sorted by importance. The inset in Fig. 3 shows a compar
of the depths of the energy wells close to contact for fix
random orientations, while Fig. 4~a! deals with the attractive
part of the interaction at arbitrary distances. Both figures a
contain results for the pole contacts discussed before to a
for an independent evaluation of the quality of the appro
mations for the distance and for the orientational part of
interaction potential.

When judged against the corresponding results for
Gay-Berne potential, the agreement between our prop
and the numerical evaluation of Eq.~3! is excellent. In ab-
solute terms, the deviations do not exceed a factor of 2–
either direction. Quite interestingly, our approximations
x12 andh12 do not seem to be the source of large additio
errors. Figure 4~b! shows that the agreement is significan
reduced, if the approximate GB distance function Eq.~8! is
used instead of the true distance of closest approach Eq~7!.

VIII. SUMMARY

We have presented an approximative interaction poten
for soft ellipsoidal particles. Our potential uses~almost! the
same variables as the Berardi, Fava, and Zannoni@8# form of
the Gay-Berne@3# potential for biaxial ellipsoids, agrees sig
nificantly better with the numerically evaluated exact int
action potential, has no unphysical limits, and avoids
introduction of empirical adjustable parameters. The m
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modifications we propose are the following.
~1! To abandon the unphysical factorization of the orie

tation and distance dependent parts of the potential@Eq. ~5!#
as well as the Lennard-Jones-like form of the distance
pendence itself@Eq. ~6!# and to replace them by Eqs.~35!
and ~36!.

~2! To use the Gaussian curvatures at the ellipsoid po
Eqs. ~45!–~47! in order to characterize the relative we
depth for side-to-side, face-to-face, and end-to-end inte
tions through the orientation and relative position depend
factor x12(A1 ,A2 , r̂ 12) defined in Eqs.~13! and ~14!.

~3! To replace the definition Eqs.~10!–~11! of the purely
orientiation dependent factorh12(A1 ,A2) by Eqs.~49!–~51!.

~4! To use the~effective! Hamaker constantA12 @7# to set
the energy scale.

Our results for the attractive part of the soft potential a
directly applicable to hard ellipsoids with van der Waals
teractions. Furthermore, the proposed potential comprises
interaction of point particles with ellipsoids as a well-defin
limit. This may be of interest for studies of wetting or poly
mer adsorption in colloidal dispersions which so far assu
either a flat or a cylindrical geometry@18#.
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FIG. 4. ~Color online only! Deviations of approximate potential
from the true Hamaker potential as a function of the absolute va
of the Hamaker potential:~a! using the correct distance of close
approach Eq.~7!; ~b! using the approximate GB distance functio
Eq. ~8!. We show results for contacts between an oblate and a
late ellipsoid with semiaxes (a,b,c)5(1,6,6)s and (a,b,c)
5(2,2,9)s, respectively, and randomly chosen relative orientatio
and positions:~dark 3) our potential,~gray 1) a Gay-Berne 6-12
potential adjusted to reproduce the energy minima within the De
aguin aproximation. The solid lines show the corresponding res
for pole contacts~see Fig. 1!.
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